Assessment of oxidative stress biomarkers – neuroprostanes and dihomo-isoprostanes – in the urine of elite triathletes after two weeks of moderate-altitude training

Libia Alejandra García-Floresa*, Sonia Medinaa*, Roberto Cejuelab, José Miguel Martínez-Sanzb, Camille Ogerc, Jean-Marie Galanoa, Thierry Durandd, Teresa Casas-Pinad, Pedro Martínez-Hernándezd, Federico Ferreresa and Ángel Gil-Izquierdoo

aDepartment of Food Science and Technology, CEBAS-CSIC, Murcia, Spain; bFaculty of Education, University of Alicante, Alicante, Spain; cInstitut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier 1 & Montpellier 2 – ENSCM, Montpellier, France; dClinical Analysis Service, University Hospital Virgen de la Arrixaca, Murcia, Spain

ABSTRACT
This randomized and controlled trial investigated whether the increase in elite training at different altitudes altered the oxidative stress biomarkers of the nervous system. This is the first study to investigate four \(F_4 \)-neuroprostanes (\(F_4 \)-NeuroPs) and four \(F_2 \)-dihomo-isoprostanes (\(F_2 \)-dihomo-IsoPs) quantified in 24-h urine. The quantification was carried out by ultra high pressure liquid chromatography-triple quadrupole-tandem mass spectrometry (UHPLC-QqQ-MS/MS). Sixteen elite triathletes agreed to participate in the project. They were randomized in two groups, a group submitted to altitude training (AT, \(n = 8 \)) and a group submitted to sea level training (SLT) (\(n = 8 \)), with a control group (Cg) of non-athletes (\(n = 8 \)). After the experimental period, the AT group triathletes gave significant data: 17-epi-17-\(F_2 \)-dihomo-IsoP (from 5.2 ± 1.4 \(\mu g/mL \) 24 h\(^{-1} \) to 6.6 ± 0.6 \(\mu g/mL \) 24 h\(^{-1} \)), \(\text{ent-7(RS)} \)-7-\(F_4 \)-dihomo-IsoP (from 6.6 ± 1.7 \(\mu g/mL \) 24 h\(^{-1} \) to 8.6 ± 0.9 \(\mu g/mL \) 24 h\(^{-1} \)), and \(\text{ent-7-epi-7} \)-\(F_2 \)-dihomo-IsoP (from 8.4 ± 2.2 \(\mu g/mL \) 24 h\(^{-1} \) to 11.3 ± 1.8 \(\mu g/mL \) 24 h\(^{-1} \)) increased, while, of the neuronal degeneration-related compounds, only 10-epi-10-\(F_4 \)-NeuroP (8.4 ± 1.7 \(\mu g/mL \) 24 h\(^{-1} \)) and 10-\(F_4 \)-NeuroP (5.2 ± 2.9 \(\mu g/mL \) 24 h\(^{-1} \)) were detected in this group. For the Cg and SLT groups, no significant changes had occurred at the end of the two-week experimental period. Therefore, and as the main conclusion, the training at moderate altitude increased the \(F_4 \)-NeuroPs- and \(F_2 \)-dihomo-IsoPs-related oxidative damage of the central nervous system compared to similar training at sea level.

Introduction

The practice of training at altitude is well known among coaches and athletes, particularly elite athletes. At altitude, exposure to hypoxia is known to influence all functional systems of the body, including the central nervous system (CNS), the endocrine, respiratory, and cardiovascular systems, the blood oxygen-carrying capacity, and morphological and functional adaptations in skeletal muscle [1]. The nervous system is especially vulnerable to reactive oxygen species (ROS)-mediated injury: one reason for this is that the high oxygen consumption of the brain, due to high energy needs, results in excessive ROS production. In addition, the neuronal membranes are rich in polyunsaturated fatty acids (PUFA), which are particularly vulnerable to free radical attack [2]. When exercising at altitude the body responds to the fall in the barometric pressure as well as to physical exercise, another factor that contributes to increased oxidative stress (OS) according to the literature [3,4]. The OS seems to be linearly related to the altitude: higher altitude leads to a greater oxidative challenge to the body [5]. The effects of hypoxia in the brain may influence the training intensity and/or the physiological responses during training at altitude [1]. In addition, previous research indicated that exercise-induced OS may alter the capacity for oxidation and anti-oxidation of brain tissue [6,7]. Nevertheless, the OS-related consequence of high altitude training (AT) is poorly known [8]. But, there is relatively consistent evidence from human and animal studies that hypoxia associated with high altitude causes oxidative damage to lipids, proteins, and DNA.
This damage can be due to the increased ROS production and/or decreased antioxidant capacity [9].

Lipid peroxidation generates a variety of end products, which can then be measured in biological fluid as an indirect index of OS [10–13]. The most representative end products of the oxidation of fatty acids of the nervous system are the F₄-neuroprostanes (F₄-NeuroPs), from docosahexaenoic acid (DHA), and the F₂-dihomo-isoprostanes (F₂-dihomo-Isops), from arachidonic acid (AdA) [10]. The PUFAs, DHA, and AdA, are highly localized in the nervous tissue and represent the main PUFAs in gray and white matter, respectively [10,14], although AdA also has a high presence in the adrenal gland and kidneys [15] and DHA likewise in adipose tissue, rectal epithelium, muscle, liver and spleen, heart and cheek, red blood cells, and sperm [16]. The quantification of F₄-NeuroPs and F₂-dihomo-Isops provides a highly sensitive index of oxidative neuronal injury, which likely represents a global measure of oxidant status in the CNS [17]. In the literature it is mentioned that some metabolites of F₄-NeuroPs could have biological activities (anti-arrhythmic activities) [10].

Currently, the detection of F₄-NeuroPs and F₂-dihomo-Isops is mainly performed in brain tissue and/or body fluids. They are used mainly in clinical trials to elucidate the role of OS in the diseases [18,19]. No attention has been paid yet to these CNS degradation markers, physical exercise, or the influence of training at altitude or sea level, with regard to OS generation. As noted earlier, exposure to high altitude increases ROS production or decreases antioxidant capacity, and then can lead to oxidative damage to macromolecules [9]. Therefore, this randomized, controlled trial investigated whether training at different altitudes (~2300 m and 400 m) can alter the OS linked to the nervous system in elite triathletes, by analyzing the variations in the values of F₄-neuroPs/F₂-dihomo-Isops excreted before and after the experimental period at different altitudes. To the best of our knowledge, it is the first study concerning the assessment of these non-invasive biomarkers -NeuroPs and dihomo-Isops- in elite triathletes subjected to AT or sea level training (SLT).

Materials and methods

Physical characteristics of participants and dietary intake

Sixteen elite triathletes (12 male and 4 female) from the University of Alicante (Spain) agreed to participate in the project. They were randomized in two groups, a group subjected to AT (n = 8) and a group subjected to SLT (n = 8). The control group (Cg, n = 8) were non-athletes, with similar anthropometric characteristics and the same age range and healthy lifestyle as the triathletes, who remained at sea level throughout the study. Each group included six men and two women, to avoid variations in the analysis. All the volunteers were sea level residents, non-smokers, had stable food habits, and did not receive any medication during the experimental procedure (prescription or over-the-counter medication). None had made a trip to high altitude in the three months before the intervention program. The study was approved by the Bioethics Committee of the University Hospital of Murcia and all participants provided written, informed consent to a protocol approved by the institution.

The physical parameters (Table 1) and dietary habits (Table 2) of the triathletes were controlled before the onset of the assay and after the experimental period – AT or SLT – according to their biological and physiological characteristics. Regarding the Cg, their physical parameters and dietary habits were evaluated at the same time as those of the triathletes. The anthropometric measurements were made according to the International Society for the Advancement of Kinanthropometry (ISAK) and were performed by the same, internationally certified anthropometrist (level 2 ISAK) in order to decrease technical errors. The body composition was determined by GREC Kinanthropometry consensus [20], using a model consisting of: total fat by Withers’s formula [21]; lean weight by the procedure described by Leet et al. [22]; and residual mass by the difference in the weight (Table 1).

The triathletes consumed a constant, equal diet (Table 2) from two weeks before the onset of the study until its conclusion, to avoid any interference with urinary analyses. The calculation of the dietary parameters and calorific intake was accurately designed and overviewed during the experimental intervention by nutritionists, using specific software for the calculation (the data were calculated by the software available on the website: http://www.easydiet.es), with the additional assistance of the Spanish (http://www.bedca.net/) and USDA (http://www.nal.usda.gov/fnic/foodcomp/search/) databases. All the food for the study was prepared and weighed to achieve the desired and constant calorific and nutrient intake for each triathlete.

Training load

The training load quantification was performed using the Objective Load Scale (ECOs) developed by Cejuela Anta and Esteve-Lanao [23]. Variations in ECOs were recorded as training loads, which were measured and slightly modified, daily and weekly, to ensure the homogeneity of the training program, taking into
account the variable physical characteristics of each athlete during the study (Table 1). The method used allowed the quantification of the training loads in triathlon (swim, bike, run, and transitions). The training loads developed by elite triathletes in the present work were similar to those found in other studies [24–26].

Experimental design

The study was a randomized, controlled trial (Figure 1) where the athletes were randomly divided into two groups, a group subjected to AT (n = 8) and a group undergoing SLT (n = 8), during an experimental period of two weeks, while their training was supervised. The hypoxia exposure was carried out in the “Centro de Alto Rendimiento de Sierra Nevada (CAR)” (2320 m altitude; Sierra Nevada, Alpujarra and Valle de Lecrin, Spain). Before the onset of the experimental period, the training load and diet of the two groups were kept similar for two weeks. The experimental training period for the athletes started with an increase of the effort loads, keeping the ECOs constant during the two weeks. The Cg maintained their lifestyle at sea level (400 m) throughout the assay. The first 24-h urine sample was collected at the beginning the experimental period and the second 24-h urine sample was collected at the end. The samples of the Cg were collected at the same time as those of the triathletes. Urine samples were aliquoted

Table 1. Physical parameters and metabolic characteristics at the beginning and end of the experimental period of the control group (n = 8) and of the triathletes according to their altitude level training (n = 16, divided into two levels: at sea level, n = 8 and at altitude level, n = 8), and with their Objective Load Scale (ECOs).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group (<=400 m)</th>
<th>Triathletes (<=400 m)</th>
<th>Altitude (~2320 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>21.9 (6.2)</td>
<td>20.8 (2.0)</td>
<td>20.3 (1.8)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>64.4 (8.2)</td>
<td>68.4 (13.1)</td>
<td>68.1 (7.1)</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.7 (0.1)</td>
<td>1.7 (0.1)</td>
<td>1.8 (0.1)</td>
</tr>
<tr>
<td>BMI (kg m⁻²)</td>
<td>22.0 (0.9)</td>
<td>21.4 (2.5)</td>
<td>21.3 (0.6)</td>
</tr>
<tr>
<td>Total fat (kg)</td>
<td>9.3 (1.6)</td>
<td>8.4 (1.3)</td>
<td>6.2 (1.2)</td>
</tr>
<tr>
<td>Lean weight (kg)</td>
<td>26.7 (6.3)</td>
<td>29.1 (7.2)</td>
<td>32.2 (7.3)</td>
</tr>
<tr>
<td>Subscapular skinfold (mm)</td>
<td>11.5 (1.5)</td>
<td>10.6 (2.0)</td>
<td>7.8 (1.6)</td>
</tr>
<tr>
<td>Tricipital skinfold (mm)</td>
<td>12.9 (5.2)</td>
<td>12.3 (6.8)</td>
<td>7.4 (3.4)</td>
</tr>
<tr>
<td>Bicippital skinfold (mm)</td>
<td>4.6 (1.3)</td>
<td>4.7 (1.4)</td>
<td>4.6 (1.7)</td>
</tr>
<tr>
<td>Ileocrestal skinfold (mm)</td>
<td>14.1 (0.8)</td>
<td>13.9 (4.7)</td>
<td>10.4 (3.4)</td>
</tr>
<tr>
<td>Supraespinale skinfold (mm)</td>
<td>10.8 (0.6)</td>
<td>10.5 (3.6)</td>
<td>7.3 (1.9)</td>
</tr>
<tr>
<td>Abdominal skinfold (mm)</td>
<td>18.1 (3.7)</td>
<td>17.7 (7.1)</td>
<td>10.5 (4.6)</td>
</tr>
<tr>
<td>Thigh skinfold (mm)</td>
<td>17.8 (5.8)</td>
<td>16.1 (9.3)</td>
<td>10.4 (4.3)</td>
</tr>
<tr>
<td>Calf skinfold (mm)</td>
<td>12.3 (3.5)</td>
<td>10.2 (3.8)</td>
<td>7.1 (2.9)</td>
</tr>
<tr>
<td>Fat mass (%)</td>
<td>14.0 (10.2)</td>
<td>13.7 (3.4)</td>
<td>10.25 (2.2)</td>
</tr>
<tr>
<td>Training loads (ECOs)</td>
<td></td>
<td>553 (95)</td>
<td>933 (88)</td>
</tr>
</tbody>
</table>

Values are mean (standard deviation). 1 = data corresponding to before experimental period; 2 = data corresponding to after experimental period.

BMI, body mass index.

Table 2. Dietary parameters and calorific intake.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group</th>
<th>Triathletes</th>
<th>Male (n = 6)</th>
<th>Female (n = 2)</th>
<th>Male (n = 12)</th>
<th>Female (n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy intake (kcal d⁻¹)</td>
<td>2913.1 (601.6)</td>
<td>295.1 (61.4)</td>
<td>3483.5 (673.6)</td>
<td>2585.0 (376.4)</td>
<td>409.1 (79.1)</td>
<td>324.3 (51.8)</td>
</tr>
<tr>
<td>Carbohydrate (g d⁻¹)</td>
<td>309.4 (62.4)</td>
<td>357.0 (7.6)</td>
<td>409.1 (79.1)</td>
<td>324.3 (51.8)</td>
<td>73.8 (14.0)</td>
<td>46.6 (9.2)</td>
</tr>
<tr>
<td>Dietary fiber (g d⁻¹)</td>
<td>29.5 (9.3)</td>
<td>25.2 (11.9)</td>
<td>26.6 (4.9)</td>
<td>26.4 (9.6)</td>
<td>26.6 (4.9)</td>
<td>26.4 (9.6)</td>
</tr>
<tr>
<td>Sugar (g d⁻¹)</td>
<td>125.7 (37.7)</td>
<td>147.8 (16.0)</td>
<td>169.8 (68.0)</td>
<td>147.6 (11.9)</td>
<td>169.8 (68.0)</td>
<td>147.6 (11.9)</td>
</tr>
<tr>
<td>Proteins (g d⁻¹)</td>
<td>130.8 (32.0)</td>
<td>97.6 (28.4)</td>
<td>145.7 (33.3)</td>
<td>109.9 (34.7)</td>
<td>145.7 (33.3)</td>
<td>109.9 (34.7)</td>
</tr>
<tr>
<td>Total lipids (g d⁻¹)</td>
<td>127.9 (27.3)</td>
<td>96.8 (14.0)</td>
<td>140.4 (25.69)</td>
<td>94.1 (12.2)</td>
<td>140.4 (25.69)</td>
<td>94.1 (12.2)</td>
</tr>
<tr>
<td>SFAa (g d⁻¹)</td>
<td>38.1 (11.0)</td>
<td>29.36 (5.8)</td>
<td>36.5 (10.5)</td>
<td>28.5 (6.7)</td>
<td>36.5 (10.5)</td>
<td>28.5 (6.7)</td>
</tr>
<tr>
<td>MUFAb (g d⁻¹)</td>
<td>64.5 (15.4)</td>
<td>47.3 (7.1)</td>
<td>78.9 (14.0)</td>
<td>64.6 (9.2)</td>
<td>78.9 (14.0)</td>
<td>64.6 (9.2)</td>
</tr>
<tr>
<td>PUFAc (g d⁻¹)</td>
<td>17.2 (3.9)</td>
<td>10.8 (0.4)</td>
<td>18.1 (0.7)</td>
<td>10.4 (1.0)</td>
<td>18.1 (0.7)</td>
<td>10.4 (1.0)</td>
</tr>
<tr>
<td>Vitamin C (mg d⁻¹)</td>
<td>160.9 (101.2)</td>
<td>42.8 (12.5)</td>
<td>254.4 (69.6)</td>
<td>153.6 (63.1)</td>
<td>254.4 (69.6)</td>
<td>153.6 (63.1)</td>
</tr>
<tr>
<td>Vitamin E (mg d⁻¹)</td>
<td>24.0 (10.8)</td>
<td>6.95 (0.23)</td>
<td>29.5 (8.42)</td>
<td>14.9 (1.0)</td>
<td>29.5 (8.42)</td>
<td>14.9 (1.0)</td>
</tr>
<tr>
<td>Vitamin D (mg d⁻¹)</td>
<td>6.3 (4.1)</td>
<td>2.5 (3.4)</td>
<td>5.7 (3.2)</td>
<td>3.6 (2.6)</td>
<td>5.7 (3.2)</td>
<td>3.6 (2.6)</td>
</tr>
<tr>
<td>Iron (mg d⁻¹)</td>
<td>24.7 (9.6)</td>
<td>17.0 (7.14)</td>
<td>26.9 (5.1)</td>
<td>24.6 (1.3)</td>
<td>26.9 (5.1)</td>
<td>24.6 (1.3)</td>
</tr>
<tr>
<td>Selenium (mg d⁻¹)</td>
<td>100.5 (68.5)</td>
<td>133.3 (8.2)</td>
<td>235.1 (91.2)</td>
<td>168.4 (73.6)</td>
<td>235.1 (91.2)</td>
<td>168.4 (73.6)</td>
</tr>
</tbody>
</table>

aSaturated fatty acids.
bMonounsaturated fatty acids.
cPolyunsaturated fatty acids.

Values are mean (SD).
immediately after their collection and were stored at −80 °C until analysis.

Chemicals and standards

Six F_4-NeuroPs were studied, $4(RS)$-4-F_{4t}-NeuroP, 4-F_{4t}-NeuroP, 4-epi-4-F_{3t}-NeuroP, 4-F_{3t}-NeuroP, 10-epi-10-F_{4t}-NeuroP, and 10-F_{4t}-NeuroP, as well as four F_2-dihomo-IsoPs: 17-epi-17-F_{2t}-dihomo-IsoP, 17-F_{2t}-dihomo-IsoP, ent-$7(RS)$-7-F_{2t}-dihomo-IsoP, and ent-7-epi-7-F_{2t}-dihomo-IsoP. Three deuterated internal standards (d_4-4-F_{4t}-NeuroP, d_4-10-F_{4t}-NeuroP) and d_4-10-F_{4t}-NeuroP were used (Figure 2). All standards were synthesized by Durand’s team at the Institut des Biomolecules Max Mosseron (IBMM) (Montpellier, France). All LC-MS grade solvents were obtained from Sigma-Aldrich (St. Louis, MO). All LC-MS grade solvents were obtained from J.T. Baker (Phillipsburg, NJ). Strata SPE cartridges (Strata X-AW, 100 mg 3 mL⁻¹) were purchased from Phenomenex (Torrance, CA).

Sample collection and preparation

A complete clinical analysis – consisting of hematology, chemistry, and urine chemistry analysis – was performed at the onset of and after the experimental period. All samples (blood and urine) were collected by a nurse from the subjects early in the morning, under fasting conditions. Blood samples at rest were obtained by venipuncture, at the beginning and end of the experimental period, and were placed in different tubes according to the analytical procedures. The samples were processed within 1 h of collection and were stored at −80 °C for the analytical determinations. The hematological parameters were recorded using an automated hematological analyzer (CellDyn 3700 and 4000, Abbott, IL) at the Clinical Analysis Service of the Hospital Virgen de la Arrixaca (Murcia, Spain).

Twenty-four-hour urine samples were collected before and after the two-week training period. They were collected in sterile, dark polystyrene tubes with screw caps. The urine analyses were also performed in a modular analyzer (Roche Diagnostic, Mannheim, Germany). The 24-h⁻¹ urine was used for the absolute calculation of the amounts of F_4-NeuroPs and F_2-dihomo-IsoPs excreted. The urinary F_4-NeuroPs and F_2-dihomo-IsoPs were analyzed using our previously described method [27].

UHPLC-QqQ-MS/MS analyses

The separation of the F_4-NeuroPs and F_2-dihomo-IsoPs in the urine was performed using a ultra high pressure liquid chromatography (UHPLC) coupled with a 6460 QqQ-MS/MS (Agilent Technologies, Waldbronn, Germany), using the set-up described previously by Medina et al. [27]. Data acquisition and processing was performed using MassHunter software version B.04.00 (Agilent Technologies, Waldbronn, Germany). The qualitative and quantitative analysis of F_4-NeuroPs and F_2-dihomo-IsoPs was performed using the authentic markers synthesized by Durand’s team. Three deuterated analytes were used as internal standards (Figure 2).

Statistical analyses

All the statistical analyses were performed using the SPSS 21.0 software package (LEAD Technologies Inc., Chicago, IL). Quantitative data are presented as mean ± SD (standard deviation). The amounts excreted of F_4-NeuroPs and F_2-dihomo-IsoPs were calculated as μg/mL per 24-h⁻¹ urine. The normality was analyzed by the Shapiro–Wilk test and the homogeneity of variances by Levene’s test. Specific differences between the hematological, serum, and urinary parameters of the SLT and AT triathletes before and after the training period were determined by the t-test and Wilcoxon test, according to the results of the analysis of normality. Differences in the amounts of F_4-NeuroPs and F_2-dihomo-IsoPs excreted, within the same group, AT or SLT, as a result of the training at different altitudes, were
examined by the paired t-test (before/after). Differences were considered to be statistically significant at \(p < 0.05 \).

Results

Anthropometric variables and training performance

The kinanthropometric measurements, performed following the ISAK, did not yield representative differences between the experimental groups. The training loads of the triathletes (SLT and AT) at the onset of the training period ranged from 458 to 727 ECOs and after the experimental period from 766 to 1021 ECOs (Table 1).

Hematology, chemistry, and urine chemistry modifications

Regarding the results of the tests and profiles, significant variation in the hematology, chemistry, and urine chemistry was detected between the AT and SLT triathletes, after the training program. In this study, we only mention the parameters that showed significant
Assessment of oxidative stress biomarkers – neuroprostanes and dihomo-isoprostanes – in the urine of elite triathletes after two weeks of moderate-altitude training

Libia Alejandra García-Floresa*, Sonia Medinaa*, Roberto Cejuelab, José Miguel Martínez-Sanzb, Camille Ogerc, Jean-Marie Galanoa, Thierry Durandf, Teresa Casas-Pinad, Pedro Martínez-Hernándezd, Federico Ferreresa and Ángel Gil-Izquierdoa

aDepartment of Food Science and Technology, CEBAS-CSIC, Murcia, Spain; bFaculty of Education, University of Alicante, Alicante, Spain; cInstitut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier 1 & Montpellier 2 – ENSCM, Montpellier, France; dInstitutive de Nutrición y Bienestar Humano, Universitat de València, Valencia, Spain; and eClinical Analysis Service, University Hospital Virgen de la Arrixaca, Murcia, Spain

ABSTRACT This randomized and controlled trial investigated whether the increase in elite training at different altitudes altered the oxidative stress biomarkers of the nervous system. This is the first study to investigate four F4-neuroprostanes (F4-NeuroPs) and four F2-dihomo-isoprostanes (F2-dihomo-IsoPs) quantified in 24-h urine. The quantification was carried out by ultra high pressure liquid chromatography-triple quadrupole-tandem mass spectrometry (UHPLC-QqQ-MS/MS). Sixteen elite triathletes agreed to participate in the project. They were randomized in two groups, a group submitted to altitude training (AT, n = 8) and a group submitted to sea level training (SLT) (n = 8), with a control group (Cg) of non-athletes (n = 8). After the experimental period, the AT group triathletes gave significant data: 17-epi-17-F2t-dihomo-IsoP (from 5.2 ± 1.4 µg/mL 24 h⁻¹ to 6.6 ± 0.6 µg/mL 24 h⁻¹), ent-7(RS)-7-F4t-neuroprostane (from 6.6 ± 1.7 µg/mL 24 h⁻¹ to 8.4 ± 0.9 µg/mL 24 h⁻¹), and ent-7-epi-7-F4t-neuroprostane (from 8.4 ± 2.2 µg/mL 24 h⁻¹ to 11.3 ± 1.8 µg/mL 24 h⁻¹) increased, while, of the neuronal degeneration-related compounds, only 10-epi-10-F4t-neuroprostane (8.4 ± 1.7 µg/mL 24 h⁻¹) and 10-F4t-neuroprostane (5.2 ± 0.9 µg/mL 24 h⁻¹) were detected in this group. For the Cg and SLT groups, no significant changes occurred at the end of the two-week experimental period. Therefore, and as the main conclusion, the training at moderate altitude increased the F4-NeuroPs- and F2-dihomo-IsoPs-related oxidative damage of the central nervous system compared to similar training at sea level.

INTRODUCTION

The practice of training at altitude is well known among coaches and athletes, particularly elite athletes. At altitude, exposure to hypoxia is known to influence all functional systems of the body, including the central nervous system (CNS), the endocrine, respiratory, and cardiovascular systems, the blood oxygen-carrying capacity, and morphological and functional adaptations in skeletal muscle [1]. The nervous system is especially vulnerable to reactive oxygen species (ROS)-mediated injury: one reason for this is that the high oxygen consumption of the brain, due to high energy needs, results in excessive ROS production. In addition, the neuronal membranes are rich in polyunsaturated fatty acids (PUFA), which are particularly vulnerable to free radical attack [2]. When exercising at altitude the body responds to the fall in the barometric pressure as well as to physical exercise, another factor that contributes to increased oxidative stress (OS) according to the literature [3,4]. The OS seems to be linearly related to the altitude: higher altitude leads to a greater oxidative challenge to the body [5]. The effects of hypoxia in the brain may influence the training intensity and/or the physiological responses during training at altitude [1]. In addition, previous research indicated that exercise-induced OS may alter the capacity for oxidation and anti-oxidation of brain tissue [6,7]. Nevertheless, the OS-related consequence of high altitude training (AT) is poorly known [8]. But, there is relatively consistent evidence from human and animal studies that hypoxia associated with high altitude causes oxidative damage to lipids, proteins, and DNA.

ARTICLE HISTORY

Received 13 May 2015
Revised 16 September 2015
Accepted 19 October 2015
Published online 17 March 2016

KEYWORDS
Altitude; dihomo-isoprostanes; neuroprostanes; oxidative stress; physical exercise; UHPLC-QqQ-MS/MS

CONTACT Ángel Gil-Izquierdo angelgil@cebas.csic.es
Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain

*These two authors have contributed equally to this work.

© 2015 Taylor & Francis
changes according to the different tests and profiles of the clinical analyses and that could be relevant – in biochemical terms – to the F4-NeuroPs and F2-dihomo-IsoPs, according to previous investigations [28–32] (Table 3). Specifically, according to the non-parametric statistical tests used to compare the hemoglobin concentrations before and after moderate-AT, the hemoglobin concentrations in the AT group did not show significant changes after the two-week experimental period, according to the Wilcoxon test; $Z = –1.820$, sig = 0.069. Regarding the clinical urinary parameters (urinary density (g mL$^{-1}$), pH, proteins (mg dL$^{-1}$), calcium (mg dL$^{-1}$), phosphorus (mg dL$^{-1}$), uric acid (mg dL$^{-1}$), urea (mg dL$^{-1}$), creatinine (mg dL$^{-1}$), and potassium (mEq L$^{-1}$)), no significant differences between the AT and SLT groups of triathletes before and after the experimental period were observed.

Qualitative analysis of F4-neuroprostanes and F2-dihomo-isoprostanes

Ten biomarkers were screened in the urine of volunteers. Their identification was confirmed according to their molecular masses, the characteristic MS/MS fragmentation product ions, and the retention time relative to the corresponding standard. The mass spectral information on the F4-NeuroPs and F2-dihomo-IsoPs is summarized in our previous report [27].

The NeuroPs deriving from DHA were not detected in the urine of the SLT and Cg groups, under any condition – perhaps because they were present at very low levels, below the limit of detection and/or quantification (LOD/LOQ). Only two NeuroPs were detected in the urine of the AT group after training (10-epi-10-F$_{4t}$-NeuroP, 10-F$_{4t}$-NeuroP) (Figure 3). The analytes deriving from AdA were detected in triathletes and non-triathletes at the beginning and end of the experimental period. In the present study, F$_{3}$-NeuroPs (4-epi-4-F$_{3t}$-NeuroP and 4-F$_{3t}$-NeuroP) formed by the oxidation of docosapentaenoic acid were analyzed, but were below the LOD/LOQ. Therefore, these data are not shown.

Quantification of F4-neuroprostanes and F2-dihomo-isoprostanes

A total of six biomarkers were quantified in the urine of the triathletes, as described in Figure 3. All of the urinary biomarkers were normalized to the total 24-h excretion volume. The values are presented as the mean ($±$SD) total urinary excretion at the onset of and after the experimental period, for all groups (µg/mL 24 h$^{-1}$). In the AT group, only the analytes 10-epi-10F$_{4t}$-NeuroP and 10-F$_{4t}$-NeuroP (8.4 ± 2.1 and 5.2 ± 1.2 µg/mL 24 h$^{-1}$, respectively) were detected, after physical training at altitude.

On the other hand, the markers of lipid peroxidation derived from AdA were quantified in all groups and showed statistically significant variation in the AT group. The two-week exposure to moderate altitude produced significant increases in the urinary levels of 17-epi-17-F$_{2t}$-dihomo-IsoP, ent-7(RS)-7-F$_{2t}$-dihomo-IsoP, and ent-7-epi-7-F$_{2t}$-dihomo-IsoP, compared to their corresponding concentrations at the start of the training period – according to the paired t-test (Figure 3). The urinary excretion of F$_{2}$-dihomo-IsoPs in the Cg and SLT groups had not changed significantly after the two-week experimental period at sea level.

Discussion

When comparing the urinary excretion of F$_{4}$-NeuroPs and F$_{2}$-dihomo-IsoPs at the onset of and after the

<table>
<thead>
<tr>
<th>Variable</th>
<th>Before training</th>
<th>After training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatic amylase (U L$^{-1}$)*</td>
<td>22.33 (5.01) 25.25 (7.65)</td>
<td>22.50 (4.46) 203.50 (25.08)</td>
</tr>
<tr>
<td>Lactate dehydrogenase (U L$^{-1}$)*</td>
<td>179.5 (38.87) 213.63 (36.25)</td>
<td>157.83 (32.98) 109.63 (25.00)</td>
</tr>
<tr>
<td>Lipase (U L$^{-1}$)*</td>
<td>25.33 (6.22) 26.88 (8.34)</td>
<td>22.67 (4.97) 32.63 (10.17)</td>
</tr>
<tr>
<td>C-reactive protein (mg/dL)*</td>
<td>0.10 (0.09) 0.11 (0.21)</td>
<td>0.12 (0.10) 0.03 (0.0)</td>
</tr>
<tr>
<td>Ferritin (µg L$^{-1}$)*</td>
<td>48.33 (10.44) 55.88 (17.16)</td>
<td>58.00 (17.44) 32.63 (10.17)</td>
</tr>
<tr>
<td>Iron (µg L$^{-1}$)*</td>
<td>79.50 (28.65) 100.75 (20.81)</td>
<td>112.00 (62.03) 109.63 (25.00)</td>
</tr>
<tr>
<td>Hemoglobin (g dL$^{-1}$)</td>
<td>15.00 (1.31) 14.83 (1.13)</td>
<td>15.08 (0.86) 19.01 (10.78)</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>45.60 (4.50) 44.81 (3.82)</td>
<td>44.83 (2.4) 45.79 (4.24)</td>
</tr>
<tr>
<td>PDW (%)</td>
<td>16.57 (1.05) 17.29 (1.65)</td>
<td>16.38 (0.44) 15.85 (0.37)</td>
</tr>
<tr>
<td>ACF (µL)</td>
<td>82.22 (2.86) 91.64 (2.22)</td>
<td>89.12 (2.81) 93.84 (2.21)</td>
</tr>
<tr>
<td>ACH (pg cell$^{-1}$)</td>
<td>29.40 (1.51) 30.39 (0.94)</td>
<td>30.23 (1.16) 31.30 (1.04)</td>
</tr>
</tbody>
</table>

Table 3. Hematology, chemistry, and urine chemistry parameters of the elite triathletes before and after training at different altitudes ($n = 8$ for each group).

Values are means (SD).
Abbreviation: ACV, averaged corpuscular volume; ACH, averaged corpuscular hemoglobin; PDW: platelet distribution width (it analyzed in blood).

*These parameters were analyzed in serum.
†Significant differences at $p < 0.05$ between measurements before and after training periods at the same altitude.
‡Significant differences at $p < 0.01$ between measurements before and after training periods at the same altitude.
The markers of lipid peroxidation derived from DHA were analyzed but were detected under the LOD and LOQ in the urine samples of Cg and SLT triathletes. The LOD are as follows: 4(RS)-4F₄-NeuroP: 5.90 ng/mL, 4-F₄-NeuroP: 5.90 ng/mL, 10-epi-10-F₄-NeuroP: 0.15 ng/mL, and 10-F₄-NeuroP: 0.10 ng/mL. The LOQ are as follows: 4(RS)-4F₄-NeuroP: 11.81 ng/mL, 4-F₄-NeuroP: 11.81 ng/mL, 10-epi-10-F₄-NeuroP: 0.34 ng/mL, and 10-F₄-NeuroP: 0.15 ng/mL. The LOD and LOQ were based on the method described in [27]. This result suggests that our healthy volunteers, as well as athletes in physical training at sea level, did not show changes in their F₄-NeuroPs values.

In our study, after two weeks of AT, the analytes 10-epi-10-F₄-NeuroP (8.4 ± 2.1 µg/mL 24 h⁻¹ urine) and 10-F₄-NeuroP (5.2 ± 1.2 µg/mL 24 h⁻¹ urine) – derived from DHA – were detected only in this group. This suggests that 10-epi-10-F₄-NeuroP and 10-F₄-NeuroP are potential biomarkers of lipid peroxidation caused by physical exercise under hypoxia (low levels of oxygen) at moderate altitude (2320 m altitude). The effects of hypoxia in the brain may influence the training intensity and/or the physiological responses during training at altitude [1]. In the cerebral cortex of newborn pigs, an increase in the levels of F₄-NeuroPs and other OS markers, after hypoxia and resuscitation with supplementary oxygen (reoxygenation), was detected [33]. In another study of cerebral tissue, DHA seemed to be damaged more by ischemia (restriction of the blood supply to tissues) than by hypoxia, suggesting that the increase of F₄-NeuroPs could represent a specific marker for ischemia damage [32]. In humans, acute hypoxia in Rett syndrome patients increased the plasma levels of F₄-NeuroPs by two orders of magnitude, compared to those of healthy controls [34]. These results support the previous in vivo studies, regarding possible links between the hypoxic state and increased NeuroPs values.

According to the literature, F₄-NeuroPs not only might be biomarkers of lipid peroxidation but also could have anti-arrhythmic effects [10]. Therefore, the detection of 10-epi-10-F₄-NeuroP and 10-F₄-NeuroP, besides indicating an increase in lipid peroxidation in athletes submitted to altitude, also suggests a role for lipid metabolism.
against arrhythmias induced by altitude. Since arrhythmia starts at an altitude of about 2000 m, an immediate increase in ventilation, mediated by peripheral chemoreceptors, is observed according to the literature [35]. In addition, arrhythmia is one of the physiological responses to hypoxia exposure, caused by ventilator and circulatory responses that are accompanied by an increase in the sympathetic activity and local vasoregulatory effects. Therefore, these are undoubtedly key mechanisms improving oxygen delivery to tissues [1,35]. The increase in the amount of NeuroPs in urine is also evidence that the hard work involved in elite training results in OS in tissues where DHA is present – like muscle, as well as adipose tissue, rectal epithelium, liver and spleen, heart and cheek, red blood cells, and sperm. Further research is required to elucidate the biological role of the NeuroPs in triathletes.

(4) In our AT athletes, 17-epi-17-F$_{2x}$-dihomo-IsoP, ent-7(RS)-7-F$_{2x}$-dihomo-IsoP, and ent-7-epi-7-F$_{2x}$-dihomo-IsoP increased, when compared with their levels before the short-term training at moderate altitude (Figure 3). The F$_{2x}$-dihomo-IsoPs reflect the oxidative status of brain white matter, but also could reflect the OS of the other organs where they are present [18]. AT stimulates the adrenergic nervous system responsible for the acute cardiovascular response to hypoxia, playing a crucial role in the adaptation to acute hypoxia during exercise [36]. Dosek et al. [5] mentioned that physical exercise at high altitude could further increase the altitude-induced OS – as can be seen in this study – and the associated oxidative damage, although the OS seems to be linearly related to the altitude: higher altitude leads to a greater oxidative challenge to the body. On the other hand, the excretion of F$_{2x}$-dihomo-IsoPs by Cg and SLT triathletes had not changed significantly after two weeks. This result indicates that an acute increase in training at sea level for elite athletes, using ECOs, did not influence the urinary excretion of F$_{2x}$-dihomo-IsoPs. An increase of the OS biomarkers following aerobic and anaerobic acute physical exercise has been shown in numerous investigations, but also it is mentioned that, in well-trained athletes, this is not always fulfilled [37]. In studies developed in vivo, it was found that chronic exercise could increase the resistance against OS, providing enhanced protection [38–40]; for this reason, some athletes do not show changes in their levels of OS biomarkers, since they are associated with an adaptive process [5,40].

(5) The last point concerns anthropometric, biochemical, and hematological parameters and their connection with F$_4$-NeuroPs and F$_{2x}$-dihomo-IsoPs, since some of them have been associated with an increase or decrease in lipid peroxidation. As regards the anthropometric parameters and their relation to an increase in lipid peroxidation, a study carried out by Ohmori and co-workers reported that body mass index (BMI) in humans is related to an increase of lipid peroxidation [31]; but, in this sense, in our volunteers (triathletes and Cg) no changes in BMI were found during the study and there were no statistical differences between the two groups. On the other hand, the activities of the pancreatic enzymes (amylase and lipase) were increased after two weeks at altitude. The pancreatic lipases are involved in the mobilization of fatty acids from fat deposits – for example, during stress – and play a role in lipolysis, which, together with the biogenic monoamines, could influence the peroxide-induced oxidation of natural lipid [29]. Another biochemical parameter in plasma that showed significant changes was ferritin, the concentration of which decreased, while the plasma iron level remained constant. A previous study demonstrated, in cerebral cortex from rats with hypoxia-ischemia, an increase in desferoxamine chelatable-free iron that could have induced cerebral OS [32]. These authors reported increases in F$_{2x}$-IsoPs and F$_{2x}$-NeuroPs concomitant with that of iron, suggesting a dual interaction in relation to this oxidative damage. Normal physiological increases in the red blood cells count occur at high altitudes or after strenuous physical training [41]. According to the literature, after a two-week exposure to moderate altitude, the hemoglobin concentrations and hematocrit had increased in elite athletes [42,43]. Although the AT group showed higher hemoglobin concentrations after training, these were not significant in the statistical tests due to the variability of the results (Table 3). But, the AT group showed significant increases in averaged corpuscular volume and averaged corpuscular hemoglobin, compared to the baseline determinations. Hence, these data reflect a general activation of erythropoiesis in response to presumed renal tissue hypoxia, for the AT athletes. Red blood cell morphology is an important biosensor for OS imbalance and chronic hypoxemia (low oxygen in the blood), in neurodegenerative diseases [14,28]. Moreover, the leukocyte concentrations in peripheral blood after the AT effort also exhibited significant modifications. An earlier study mentioned that leukocyte antioxidants, in patients with type 2 diabetes, are related to lipid peroxidation [30]. Although physical exercise at altitude and/or exposure to altitude influenced
significantly the alterations in metabolic processes and lipid peroxidation of the AT group, it is still not clear whether they are causative or associative. Hence, further investigation is necessary to clarify these results in elite athletes.

In conclusion, in our study F_2-dihomo-IsoPs and F_4-NeuroPs have been detected for the first time in the urine of elite triathletes subjected to two weeks of training at altitude or sea level. The F_4-NeuroPs were only detected in the group training at moderate altitude, suggesting that the altitude factor could be related to their production from DHA, through lipid peroxidation. The F_2-dihomo-IsoPs also showed increases in their urinary excretion in athletes subjected to AT, versus their baseline amounts. Therefore, and as the main conclusion, the training at moderate altitude increased the F_2-NeuroPs- and F_2-dihomo-isoPs-related oxidative damage of the CNS, compared to similar training at sea level.

Acknowledgements

We are grateful to Dr. David Walker for the review of the English grammar and style of the current report.

Disclosure statement

The authors declare that they have no conflict of interest.

Funding information

This study was supported by the project AGL2011-23690 (CICYT) (Spanish Ministry of Economy and Competitiveness). L.A.G.F. was granted a pre-doctoral FPI fellowship (BES2012-060185) by the Spanish government. The authors are also grateful to the University of Alicante for its collaboration. S.M. was appointed under a research contract from the project AGL2011-23690 (CICYT).

References

changes according to the different tests and profiles of the clinical analyses and that could be relevant – in biochemical terms – to the F4-NeuroPs and F2-dihomo-IsopPs, according to previous investigations [28–32] (Table 3). Specifically, according to the non-parametric statistical tests used to compare the hemoglobin concentrations before and after moderate-AT, the hemoglobin concentrations in the AT group did not show significant changes after the two-week experimental period, according to the Wilcoxon test; Z = –1.820, sig = 0.069. Regarding the clinical urinary parameters (urinary density (g mL\(^{-1}\)), pH, proteins (mg dL\(^{-1}\)), calcium (mg dL\(^{-1}\)), phosphorus (mg dL\(^{-1}\)), uric acid (mg dL\(^{-1}\)), urea (mg dL\(^{-1}\)), creatinine (mg dL\(^{-1}\)), and potassium (mEq L\(^{-1}\)), no significant differences between the AT and SLT groups of triathletes before and after the experimental period were observed.

Qualitative analysis of F4-neuroprostanes and F2-dihomo-isoprostanes

Ten biomarkers were screened in the urine of volunteers. Their identification was confirmed according to their molecular masses, the characteristic MS/MS fragmentation product ions, and the retention time relative to the corresponding standard. The mass spectral information on the F4-NeuroPs and F2-dihomo-IsopPs is summarized in our previous report [27].

The NeuroPs deriving from DHA were not detected in the samples of the triathletes in the SLT and Cg groups, under any condition – perhaps because they were present at very low levels, below the limit of detection and/or quantification (LOD/LOQ). Only two NeuroPs were detected in the urine of the AT group after training (10-epi-10-F4t-NeuroP, 10-F4t-NeuroP) (Figure 3). The analytes deriving from AdA were detected in triathletes and non-triathletes at the beginning and end of the experimental period. In the present study, F3-NeuroPs (4-epi-4-F3t-NeuroP and 4-F3t-NeuroP) formed by the oxidation of docosapentaenoic acid were analyzed, but were below the LOD/LOQ. Therefore, these data are not shown.

Quantification of F4-neuroprostanes and F2-dihomo-isoprostanes

A total of six biomarkers were quantified in the urine of the triathletes, as described in Figure 3. All of the urinary biomarkers were normalized to the total 24-h excretion volume. The values are presented as the mean (±SD) total urinary excretion at the onset of and after the experimental period, for all groups (µg/mL 24 h\(^{-1}\)). In the AT group, only the analytes 10-epi-10F4t-NeuroP and 10-F4t-NeuroP (8.4 ± 2.1 and 5.2 ± 1.2 µg/mL 24 h\(^{-1}\), respectively) were detected, after physical training at altitude.

On the other hand, the markers of lipid peroxidation derived from AdA were quantified in all groups and showed statistically significant variation in the AT group. The two-week exposure to moderate altitude produced significant increases in the urinary levels of 17-epi-17-F2t-dihomo-Isop, ent-7(RS)-7-F2t-dihomo-Isop, and ent-7-epi-7-F2t-dihomo-Isop, compared to their corresponding concentrations at the start of the training period – according to the paired t-test (Figure 3). The urinary excretion of F2-dihomo-IsopPs in the Cg and SLT groups had not changed significantly after the two-week experimental period at sea level.

Discussion

When comparing the urinary excretion of F4-NeuroPs and F2-dihomo-IsopPs at the onset of and after the

<table>
<thead>
<tr>
<th>Variable</th>
<th>Before training</th>
<th>Sign.</th>
<th>After training</th>
<th>Sign.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLT (≤400 m)</td>
<td>AT (>2320 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic amylase (U L(^{-1}))</td>
<td>22.33 (5.01)</td>
<td>25.25 (7.65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactate dehydrogenase (U L(^{-1}))</td>
<td>179.5 (38.87)</td>
<td>213.63 (36.25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipase (U L(^{-1}))</td>
<td>25.33 (6.22)</td>
<td>26.88 (8.34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-reactive protein (mg/dL)</td>
<td>0.10 (0.09)</td>
<td>0.11 (0.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferritin (µg L(^{-1}))</td>
<td>48.33 (10.44)</td>
<td>55.88 (17.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron (µg L(^{-1}))</td>
<td>79.50 (28.65)</td>
<td>100.75 (20.81)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (g dL(^{-1}))</td>
<td>15.00 (1.31)</td>
<td>14.83 (1.13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>45.60 (4.50)</td>
<td>44.81 (3.82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDW (%)</td>
<td>16.57 (1.05)</td>
<td>17.29 (1.65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACV (fL)</td>
<td>82.22 (2.86)</td>
<td>91.64 (2.22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACH (pg cell(^{-1}))</td>
<td>29.40 (1.51)</td>
<td>30.39 (0.94)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLT (≤400 m)</td>
<td>AT (>2320 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic amylase (U L(^{-1}))</td>
<td>22.50 (4.46)</td>
<td>30.13 (7.83)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactate dehydrogenase (U L(^{-1}))</td>
<td>157.83 (32.98)</td>
<td>203.50 (25.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipase (U L(^{-1}))</td>
<td>22.67 (4.97)</td>
<td>32.63 (10.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-reactive protein (mg/dL)</td>
<td>0.12 (0.10)</td>
<td>0.03 (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferritin (µg L(^{-1}))</td>
<td>58.00 (17.44)</td>
<td>38.50 (14.76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron (µg L(^{-1}))</td>
<td>112.00 (62.03)</td>
<td>109.63 (72.99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (g dL(^{-1}))</td>
<td>15.08 (0.86)</td>
<td>19.01 (10.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>44.83 (2.4)</td>
<td>45.79 (4.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDW (%)</td>
<td>16.38 (0.44)</td>
<td>15.85 (0.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACV (fL)</td>
<td>89.12 (2.81)</td>
<td>93.84 (2.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACH (pg cell(^{-1}))</td>
<td>30.23 (1.16)</td>
<td>31.30 (1.04)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are means (SD). Abbreviation: ACV, averaged corpuscular volume; ACH, averaged corpuscular hemoglobin; PDW; platelet distribution width (it analyzed in blood).

*These parameters were analyzed in serum.

Significant differences at p < 0.05 measured at different altitudes at matched time points.

Significant differences at p < 0.05 between measurements before and after training periods at the same altitude.

Significant differences at p < 0.01 between measurements before and after training periods at the same altitude.
experimental period in all three groups, four points emerged primarily:

1. The markers of lipid peroxidation derived from DHA were analyzed but were detected under the LOD and LOQ in the urine samples of Cg and SLT triathletes. The LOD are as follows: 4(RS)-4F4-NeuroP: 5.90 ng/mL, 4-F4-NeuroP: 5.90 ng/mL, 10-epi-10-F4-NeuroP: 0.15 ng/mL, and 10-F4-NeuroP: 0.10 ng/mL. The LOQ are as follows: 4(RS)-4F4-NeuroP: 11.81 ng/mL, 4-F4-NeuroP: 11.81 ng/mL, 10-epi-10-F4-NeuroP: 0.34 ng/mL, and 10-F4-NeuroP: 0.15 ng/mL. The LOD and LOQ were based on the method described in [27]. This result suggests that our healthy volunteers, as well as athletes in physical training at sea level, did not show changes in their F4-NeuroPs values.

2. In our study, after two weeks of AT, the analytes 10-epi-10-F4t-NeuroP (8.4 ± 2.1 μg/mL 24 h⁻¹ urine) and 10-F4t-NeuroP (5.2 ± 1.2 μg/mL 24 h⁻¹ urine) – derived from DHA – were detected only in this group. This suggests that 10-epi-10-F4t-NeuroP and 10-F4t-NeuroP are potential biomarkers of lipid peroxidation caused by physical exercise under hypoxia (low levels of oxygen) at moderate altitude (2320 m altitude). The effects of hypoxia in the brain may influence the training intensity and/or the physiological responses during training at altitude [1]. In the cerebral cortex of newborn pigs, an increase in the levels of F4-NeuroPs and other OS markers, after hypoxia and resuscitation with supplementary oxygen (reoxygenation), was detected [33]. In another study of cerebral tissue, DHA seemed to be damaged more by ischemia (restriction of the blood supply to tissues) than by hypoxia, suggesting that the increase of F4-NeuroPs could represent a specific marker for ischemia damage [32]. In humans, acute hypoxia in Rett syndrome patients increased the plasma levels of F4-NeuroPs by two orders of magnitude, compared to those of healthy controls [34]. These results support the previous in vivo studies, regarding possible links between the hypoxic state and increased NeuroPs values.

3. According to the literature, F4-NeuroPs not only might be biomarkers of lipid peroxidation but also could have anti-arrhythmic effects [10]. Therefore, the detection of 10-epi-10F4t-NeuroP and 10-F4t-NeuroP, besides indicating an increase in lipid peroxidation in athletes submitted to altitude, also suggests a role for lipid metabolism.
against arrhythmias induced by altitude. Since arrhythmia starts at an altitude of about 2000 m, an immediate increase in ventilation, mediated by peripheral chemoreceptors, is observed according to the literature [35]. In addition, arrhythmia is one of the physiological responses to hypoxia exposure, caused by ventilator and circulatory responses that are accompanied by an increase in the sympathetic activity and local vasoregulatory effects. Therefore, these are undoubtedly key mechanisms improving oxygen delivery to tissues [1,35]. The increase in the amount of NeuroPs in urine is also evidence that the hard work involved in elite training results in OS in tissues where DHA is present – like muscle, as well as adipose tissue, rectal epithelium, liver and spleen, heart and cheek, red blood cells, and sperm. Further research is required to elucidate the biological role of the NeuroPs in triathletes.

(4) In our AT athletes, 17-epi-17-F$_2$-dihomo-IsoP, ent-7(RS)-7-F$_2$-dihomo-IsoP, and ent-7-epi-7-F$_2$-dihomo-IsoP increased, when compared with their levels before the short-term training at moderate altitude (Figure 3). The F$_2$-dihomo-IsoPs reflect the oxidative status of brain white matter, but also could reflect the OS of the other organs where they are present [18]. AT stimulates the adrenergic nervous system responsible for the acute cardiovascular response to hypoxia, playing a crucial role in the adaptation to acute hypoxia during exercise [36]. Dosek et al. [5] mentioned that physical exercise at high altitude could further increase the altitude-induced OS – as can be seen in this study – and the associated oxidative damage, although the OS seems to be linearly related to the altitude: higher altitude leads to a greater oxidative challenge to the body. On the other hand, the excretion of F$_2$-dihomo-IsoPs by Cg and SLT triathletes had not changed significantly after two weeks. This result indicates that an acute increase in training at sea level for elite athletes, using ECOs, did not influence the urinary excretion of F$_2$-dihomo-IsoPs. An increase of the OS biomarkers following aerobic and anaerobic acute physical exercise has been shown in numerous investigations, but also it is mentioned that, in well-trained athletes, this is not always fulfilled [37]. In studies developed in vivo, it was found that chronic exercise could increase the resistance against OS, providing enhanced protection [38–40]; for this reason, some athletes do not show changes in their levels of OS biomarkers, since they are associated with an adaptive process [5,40].

(5) The last point concerns anthropometric, biochemical, and hematological parameters and their connection with F$_4$-NeuroPs and F$_2$-dihomo-IsoPs, since some of them have been associated with an increase or decrease in lipid peroxidation. As regards the anthropometric parameters and their relation to an increase in lipid peroxidation, a study carried out by Ohmori and co-workers reported that body mass index (BMI) in humans is related to an increase of lipid peroxidation [31]; but, in this sense, in our volunteers (triathletes and Cg) no changes in BMI were found during the study and there were no statistical differences between the two groups. On the other hand, the activities of the pancreatic enzymes (amylase and lipase) were increased after two weeks at altitude. The pancreatic lipases are involved in the mobilization of fatty acids from fat deposits – for example, during stress – and play a role in lipolysis, which, together with the biogenic monoamines, could influence the peroxide-induced oxidation of natural lipid [29]. Another biochemical parameter in plasma that showed significant changes was ferritin, the concentration of which increased, while the plasma iron level remained constant. A previous study demonstrated, in cerebral cortex from rats with hypoxia-ischemia, an increase in desferoxamine chelatable-free iron that could have induced cerebral OS [32]. These authors reported increases in F$_2$-IsoPs and F$_2$-NeuroPs concomitant with that of iron, suggesting a dual interaction in relation to this oxidative damage. Normal physiological increases in the red blood cells count occur at high altitudes or after strenuous physical training [41]. According to the literature, after a two-week exposure to moderate altitude, the hemoglobin concentrations and hematocrit had increased in elite athletes [42,43]. Although the AT group showed higher hemoglobin concentrations after training, these were not significant in the statistical tests due to the variability of the results (Table 3). But, the AT group showed significant increases in averaged corpuscular volume and averaged corpuscular hemoglobin, compared to the baseline determinations. Hence, these data reflect a general activation of erythropoiesis in response to presumed renal tissue hypoxia, for the AT athletes. Red blood cell morphology is an important biosensor for OS imbalance and chronic hypoxemia (low oxygen in the blood), in neurodegenerative diseases [14,28]. Moreover, the leukocyte concentrations in peripheral blood after the AT effort also exhibited significant modifications. An earlier study mentioned that leukocyte antioxidants, in patients with type 2 diabetes, are related to lipid peroxidation [30]. Although physical exercise at altitude and/or exposure to altitude influenced...
significantly the alterations in metabolic processes and lipid peroxidation of the AT group, it is still not clear whether they are causative or associative. Hence, further investigation is necessary to clarify these results in elite athletes.

In conclusion, in our study F$_2$-dihomo-IsoPs and F$_4$-NeuroPs have been detected for the first time in the urine of elite triathletes subjected to two weeks of training at altitude or sea level. The F$_4$-NeuroPs were only detected in the group training at moderate altitude, suggesting that the altitude factor could be related to their production from DHA, through lipid peroxidation. The F$_2$-dihomo-IsoPs also showed increases in their urinary excretion in athletes subjected to AT, versus their baseline amounts. Therefore, and as the main conclusion, the training at moderate altitude increases the F$_4$-NeuroPs- and F$_2$-dihomo-isoPs-related oxidative damage of the CNS, compared to similar training at sea level.

Acknowledgements

We are grateful to Dr. David Walker for the review of the English grammar and style of the current report.

Disclosure statement

The authors declare that they have no conflict of interest.

Funding information

This study was supported by the project AGL2011-23690 (CICYT) (Spanish Ministry of Economy and Competitiveness). L.A.G.F. was granted a pre-doctoral FPI fellowship (BES2012-060185) by the Spanish government. The authors are also grateful to the University of Alicante for its collaboration. S.M. was appointed under a research contract from the project AGL2011-23690 (CICYT).

References

